A novel conservative numerical approximation scheme for the Rosenau-Kawahara equation

نویسندگان

چکیده

Abstract In this article, a numerical solution for the Rosenau-Kawahara equation is considered. A new conservative approximation scheme presented to solve initial boundary value problem of equation, which preserves original properties. The proposed based on finite difference method. existence solutions has been shown by Browder fixed point theorem. priori bound and error estimates, as well conservation discrete mass energy solutions, are discussed. discrepancies computed curves these quantities over time. Unconditional stability, second-order convergence, uniqueness proved Numerical examples given show effectiveness confirm theoretical analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservative Linear Difference Scheme for Rosenau-KdV Equation

A conservative three-level linear finite difference scheme for the numerical solution of the initial-boundary value problem of Rosenau-KdV equation is proposed.The difference scheme simulates two conservative quantities of the problemwell.The existence and uniqueness of the difference solution are proved. It is shown that the finite difference scheme is of second-order convergence and unconditi...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

A New Conservative Difference Scheme for the General Rosenau-RLW Equation

A new conservative finite difference scheme is presented for an initial-boundary value problem of the general Rosenau-RLW equation. Existence of its difference solutions are proved by Brouwer fixed point theorem. It is proved by the discrete energy method that the scheme is uniquely solvable, unconditionally stable, and second-order convergent. Numerical examples show the efficiency of the scheme.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2023

ISSN: ['0420-1213', '2391-4661']

DOI: https://doi.org/10.1515/dema-2022-0204